Enhancement of deoxyribozyme activity by cationic copolymers.
نویسندگان
چکیده
Deoxyribozymes, or DNAzymes, are DNA molecules with enzymatic activity. DNAzymes with ribonuclease activity have various potential applications in biomedical and bioanalytical fields; however, most constructs have limited turnover despite optimization of reaction conditions and DNAzyme structures. A cationic comb-type copolymer accelerates DNA hybridization and strand exchange rates, and we hypothesized that the copolymer would enhance deoxyribozyme activity by promoting turnover. The copolymer did not change DNAzyme activity under single-turnover conditions, suggesting that the copolymer affects neither the folding structure of DNAzyme nor the association of a divalent cation, a catalytic cofactor, to DNAzyme. The copolymer enhanced activity of the evaluated DNAzyme over a wide temperature range under multiple-turnover conditions. The copolymer increased the DNAzyme kcat/KM by fifty-fold at 50 °C, the optimal temperature for the DNAzyme in the absence of the copolymer. The acceleration effect was most significant when the reaction temperature was slightly higher than the melting temperature of the enzyme/substrate complex; acceleration of two orders of magnitude was observed. We concluded that the copolymer accelerated the turnover step without influencing the chemical cleavage step. In contrast to the copolymer, a cationic surfactant, CTAB, strongly inhibited the DNAzyme activity under either single- or multiple-turnover conditions.
منابع مشابه
Cooperative enhancement of deoxyribozyme activity by chemical modification and added cationic copolymer
Deoxyribozymes (DNAzymes) having RNA-cleaving activity have widely been explored as tools for therapeutic and diagnostic purposes. Both the chemical cleaving step and the turnover step should be improved for enhancing overall activity of DNAzymes. We have shown that cationic copolymer enhanced DNAzyme activity by increasing turnover efficacy. In this paper, effects of the copolymer on DNAzymes ...
متن کاملCharacterization of a catalytically efficient acidic RNA-cleaving deoxyribozyme
We previously demonstrated--through the isolation of RNA-cleaving deoxyribozymes by in vitro selection that are catalytically active in highly acidic solutions--that DNA, despite its chemical simplicity, could perform catalysis under challenging chemical conditions [Liu,Z., Mei,S.H., Brennan,J.D. and Li,Y. (2003) J. Am. Chem. Soc. 125, 7539-7545]. One remarkable DNA molecule therefrom is pH4DZ1...
متن کاملSynthesis and Properties of Novel Cationic, Temperature-Sensitive Block-Copolymers
Facile, one-step synthesis of self-assembling, cationic block copolymers of poly(2-N-(dimethylaminoethyl) methacrylate) (pDMAEMA) and PEO-PPO-PEO (Pluronic®) is developed. The copolymers are obtained via free-radical polymerization of DMAEMA initiated by Pluronic-radicals generated by cerium (IV). The copolymers possess surface activity, are polycationic at pH<7.1, and self-assemble into micell...
متن کاملActivation of DNA strand exchange by cationic comb-type copolymers: effect of cationic moieties of the copolymers
We have previously reported that poly(l-lysine)-graft-dextran cationic comb-type copolymers accelerate strand exchange reaction between duplex DNA and its complementary single strand by >4 orders of magnitude, while stabilizing duplex. However, the stabilization of the duplex is considered principally unfavourable for the accelerating activity since the strand exchange reaction requires, at lea...
متن کاملEffect of Relative Arrangement of Cationic and Lipophilic Moieties on Hemolytic and Antibacterial Activities of PEGylated Polyacrylates
Synthetic amphiphilic polymers have been established as potentially efficient agents to combat widespread deadly infections involving antibiotic resistant superbugs. Incorporation of poly(ethylene glycol) (PEG) side chains into amphiphilic copolymers can reduce their hemolytic activity while maintaining high antibacterial activity. Our study found that the incorporation of PEG has substantially...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biomaterials science
دوره 3 2 شماره
صفحات -
تاریخ انتشار 2015